A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.
نویسندگان
چکیده
Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.
منابع مشابه
Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales
We use a new compilation of global denudation estimates from cosmogenic nuclides to calculate the apportionment and the sum of all sediment produced on Earth by extrapolation of a statistically significant correlation between denudation rates and basin slopes to watersheds without denudation rate data. This robust relationship can explain approximately half of the variance in denudation from qu...
متن کاملA GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup
[1] Large fluctuations in continental configuration occur throughout the Mesozoic. While it has long been recognized that paleogeography may potentially influence atmospheric CO2 via the continental silicate weathering feedback, no numerical simulations have been done, because of the lack of a spatially resolved climate-carbon model. GEOCLIM, a coupled numerical model of the climate and global ...
متن کاملGlacial weathering, sulfide oxidation, and global carbon cycle feedbacks.
Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weatheri...
متن کاملRates of Biotite Weathering, and Clay Mineral Transformation and Neoformation, Determined from Watershed Geochemical Mass-Balance Methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA
Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging. At Coweeta Hydrologic Laboratory the coupling of ...
متن کاملBasalt weathering across scales
Weathering of silicate minerals impacts many geological and ecological processes. For example, the weathering of basalt contributes significantly to consumption of atmospheric carbon dioxide (CO2) and must be included in global calculations of such consumption over geological timeframes. Here we compare weathering advance rates for basalt (wD β ), where D and β indicate the scale at which the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 44 شماره
صفحات -
تاریخ انتشار 2008